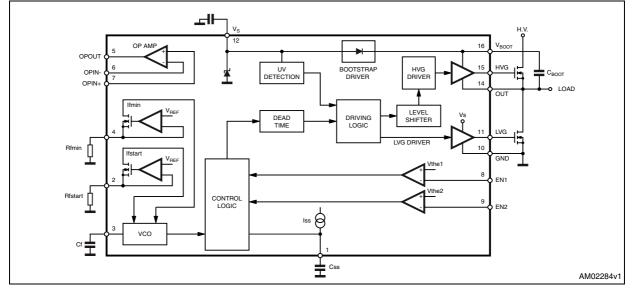


L6598

High voltage resonant controller


Features

- High voltage rail up to 600 V
- dV/dt immunity ±50 V/ns in full temperature range
- Driver current capability: 250 mA source 450 mA sink
- Switching times 80/40 ns rise/fall with 1 nF load
- CMOS shutdown input
- Undervoltage lock-out
- Soft-start frequency shifting timing
- Sense op amp for closed loop control or protection features
- High accuracy current controlled oscillator
- Integrated bootstrap diode
- Clamping on Vs
- SO16, DIP16 packages

Description

The device is manufactured with the BCD OFF LINE technology, able to ensure voltage ratings up to 600 V, making it perfectly suited for AC/DC Adapters and wherever a resonant topology can be beneficial. The device is intended to drive two power MOSFET, in the classical half bridge topology. A dedicated timing section allows the designer to set soft start time, soft start and minimum frequency. An error amplifier, together with the two enable inputs, are made available. In addition, the integrated bootstrap diode and the zener clamping on low voltage supply, reduces to a minimum the external parts needed in the applications.

Figure 1. Block diagram

October 2009

Contents

1	Maximum ratings
2	Electrical characteristics
3	Pin connections
4	Timing diagram
5	Block diagram description9
	5.1 High/low side driving section
	5.2 Timing and oscillator section
	5.3 Bootstrap section 13
	5.4 Op amp section
	5.5 Comparators 15
6	Package mechanical data 19
7	Ordering codes 22
8	Revision history

Maximum ratings 1

Table 1. Absolute maximum ratings						
Symbol	Parameter	Value	Unit			
Is	Supply current at V _{cl} ⁽¹⁾	25	mA			
VLVG	Low side output	14.6	V			
VOUT	High side reference	-1 to VBOOT -18	V			
VHVG	High side output	-1 to VBOOT	V			
VBOOT	Floating supply voltage	618	V			
dVBOOT/dt	VBOOT pin slew rate (repetitive)	±50	V/ns			
dVOUT/dt	OUT pin slew rate (repetitive)	±50	V/ns			
Vir	Forced input voltage (pins Rfmin, Rfstart)	-0.3 to 5	V			
Vic	Forced input voltage (pins Css, Cf)	-0.3 to 5	V			
VEN1, VEN2	Enable input voltage	-0.3 to 5	V			
IEN1, IEN2	Enable input current	±3	mA			
Vopc	Sense op amp common mode range	-0.3 to 5	V			
Vopd	Sense op amp differential mode range	-5 to 5	V			
Vopo	Sense op amp output voltage (forced)	4.6	V			
Tstg	Storage temperature	-40 to +150	°C			
Tj	Junction temperature	-40 to +150	°C			
Tamb	Ambient temperature	-40 to +125	°C			

1. The device is provided of an internal clamping zener between GND and the Vs pin, It must not be supplied by a low impedance voltage source.

ESD immunity for pins 14, 15 and 16 is guaranteed up to 900 (human body model). Note:

Table 2. **Thermal data**

Symbol	Parameter	SO16N	DIP16	Unit
R _{thJA}	thJA Thermal resistance junction to ambient		80	°C/W

Table 3. **Recommended operating conditions**

Symbol	Parameter	Value	Unit
Vs	Supply voltage	10 to Vcl	V
V _{out} ⁽¹⁾	High side reference	-1 to Vboot-Vcl	V
V _{boot} ⁽¹⁾	Floating supply rail	500	V
fmax	Maximum switching frequency	400	kHz

1. If the condition V_{boot} - V_{out} < 18 is guaranteed, V_{out} can range from -3 to 580 V.

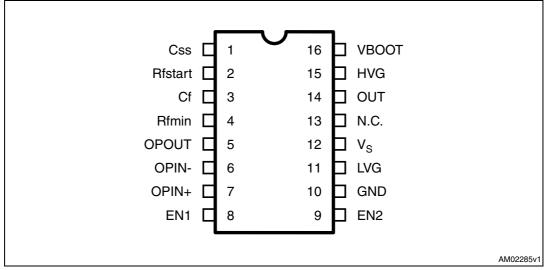
2 Electrical characteristics

 $V_S = 12 \text{ V}; \text{ } V_{BOOT} \text{ - } V_{OUT} = 12 \text{ V}; \text{ } T_A = 25 \text{ }^\circ\text{C}$

	Table 4.	Electrical	characteristics
--	----------	------------	-----------------

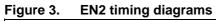
Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit	
Supply voltage								
V _{suvp}		V _S turn on threshold		10	10.7	11.4	V	
V _{suvn}	Ì	V _S turn off threshold		7.3	8	8.7	V	
V _{suvh}	12	Supply voltage under voltage hysteresis			2.7		V	
V _{cl}	12	Supply voltage clamping		14.6	15.6	16.6	V	
I _{su}		Start up current	V _S < V _{suvn}			250	μA	
I _q		Quiescent current, fout = 60 kHz, no load	$V_{S} > V_{suvp}$		2	3	mA	
High volta	ge sect	ion						
I _{bootleak}	16	BOOT pin leakage current	V _{BOOT} = 580 V			5	μA	
I _{outleak}	14	OUT pin leakage current	V _{OUT} = 562 V			5	μA	
R _{DSon}	16	Bootstrap driver on resistance		100	150	300	Ω	
High/low s	side driv	vers						
I _{hvgso}	15	High side driver source current	V_{HVG} - $V_{OUT} = 0$	170	250		mA	
I _{hvgsi}	15	High side driver sink current	V _{HVG} -V _{BOOT} = 0	300	450		mA	
l _{lvgso}	11	Low side driver source current	V_{LVG} -GND = 0	170	250		mA	
I _{Ivgsi}		Low side driver sink current	$V_{LVG} - V_S = 0$	300	450		mA	
t _{rise}	15,11	Low/high side output rise time	C _{load} = 1nF		80	120	ns	
t _{fall}	Ī		C _{load} = 1nF		40	80	ns	
Oscillator								
DC		Output duty cycle		48	50	52	%	
f _{min}	14	Minimum output oscillation frequency	$C_f = 470 pF;$ $R_{fmin} = 50 k\Omega$	58.2	60	61.8	kHz	
f _{start}		Soft start output oscillation frequency	$C_f = 470 pF; R_{fmin} =$ 50k $\Omega; R_{fstart} = 47 k\Omega$	114	120	126	kHz	

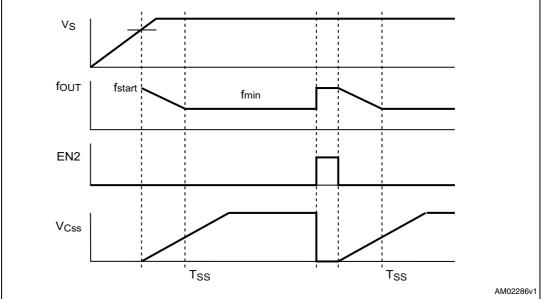
Table 4.	Electrical characteristics (continued)							
Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit	
V _{ref}	2, 4	Voltage to current converters threshold		1.9	2	2.1	V	
t _d	14	Dead time between low and high side conduction		0.2	0.27	0.35	μs	
IVref	2, 4	Reference current		120			μA	
Timing se	ction							
k _{ss}	1	Soft start timing constant	C _{ss} = 330nF	0.115	0.15	0.185	s/µF	
Sense op	amp							
I _{IB}	6, 7	Input bias current				0.1	μA	
V _{io}	0, 7	Input offset voltage		-10		10	mV	
R _{out}		Output resistance		200		300	?	
I _{out-}	5	Source output current	$V_{out} = 4.5V$	1			mA	
I _{out+}		Sink output current	$V_{out} = 0.2V$	1			mA	
V _{ic}	6,7	Op amp input common mode range		-0.2		3	V	
GBW		Sense op amp gain band width product ⁽¹⁾		0.5	1		MHz	
Gdc		DC open loop gain		60	80		dB	
Comparat	Comparators							
Vthe1	8	Enabling comparator threshold		0.56	0.6	0.64	V	
Vthe2	9	Enabling comparator threshold		1.05	1.2	1.35	V	
tpulse	8,9	Minimum pulse length				200	ns	
		L	L			•		


 Table 4.
 Electrical characteristics (continued)

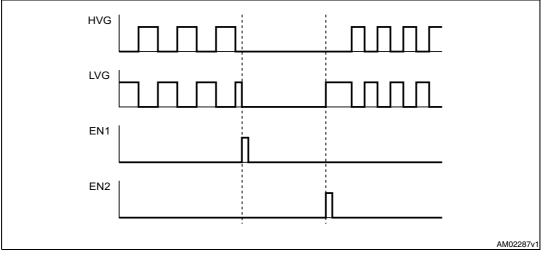
1. Guaranteed by design

3 Pin connections




Table 5. Pin description

Pin n°	Name	Function			
1	CSS	Soft start timing capacitor			
2	R _{fstart}	Soft start frequency setting - low impedance voltage source -see also C_{f}			
3	C _f	Oscillator frequency setting - see also R _{fmin} , R _{fstart}			
4	R _{fmin}	Minimum oscillation frequency setting - low impedance voltage source - see also C_f			
5	O _{Pout}	Sense op amp output - low impedance			
6	O _{Pon-}	Sense op amp inverting input -high impedance			
7	O _{Pon+}	Sense op amp non inverting input - high impedance			
8	EN1	Half bridge latched enable			
9	EN2	Half bridge unlatched enable			
10	GND	Ground			
11	LVG	Low side driver output			
12	Vs	Supply voltage with internal zener clamp			
13	N.C.	Not connected			
14	OUT	High side driver reference			
15	HVG	High side driver output			
16	V _{boot}	Bootstrapped supply voltage			



4 Timing diagram

Figure 4. EN1 timing diagrams

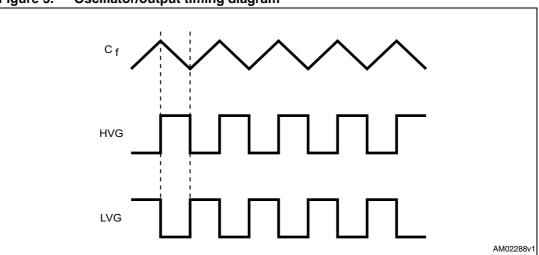


Figure 5. Oscillator/output timing diagram

5 Block diagram description

5.1 High/low side driving section

An high and low side driving section provide the proper driving to the external power MOS or IGBT. An high sink/source driving current (450/250 mA typ) ensure fast switching times also when size for power MOS are used. The internal logic ensures a minimum dead time to avoid cross-conduction of the power devices.

5.2 Timing and oscillator section

The device is provided of a soft start function. It consists in a period of time, T_{SS} , in which the switching frequency shifts from fstart to fmin. This feature is explained in the following description (ref. fig.7 and fig.8).

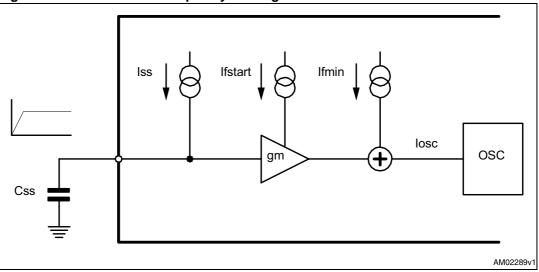


Figure 6. Soft start and frequency shifting block

During the soft start time the current I_{SS} charges the capacitor C_{SS} , generating a voltage ramp which is delivered to a transconductance amplifier, as shown in fig. 7. Thus this voltage signal is converted in a growing current which is subtracted to Ifstart. Therefore the current which drives the oscillator to set the frequency during the soft start is equal to:

Equation 1

$$I_{osc} = I_{fmin} + (I_{fstart} - g_m V_{Css}(t)) = I_{fmin} + \left(I_{fstart} - \frac{g_m I_{ss}}{C_{ss}}\right)$$

Equation 2

where
$$I_{fmin} = \frac{V_{REF}}{R_{fmin}}, I_{fstart} = \frac{V_{REF}}{R_{fstart}}, V_{REF} = 2V$$

At the start-up (t = 0) the oscillator frequency is set by:

Equation 3

$$I_{OSC}(0) = I_{fmin} + I_{fstart} = V_{REF} \left(\frac{1}{R_{fmin}} + \frac{1}{R_{fstart}}\right)$$

At the end of soft start (t = T_{SS}) the second term of eq.1 decreases to zero and the switching frequency is set only by Imin (i.e. R_{fmin}):

Equation 4

$$I_{OSC}(T_{SS}) = I_{fmin} = \frac{V_{REF}}{R_{fmin}}$$

Since the second term of eq.1 is equal to zero, we have:

Equation 5

$$I_{fstart} - \frac{g_m I_{ss}}{C_{ss}} T_{SS} = 0 \rightarrow T_{SS} = \frac{C_{ss} I_{fstart}}{g_m I_{ss}}$$

Note that there is not a fixed threshold of the voltage across C_{SS} in which the soft start finishes (i.e. the end of the frequency shifting), and Tss depends on C_{SS} , Ifstart, g_m , and I_{SS} (eq. 5). Making T_{SS} independent of Ifstart, the ISS current has been designed to be a fraction of I_{fstart} , so:

Equation 6

$$I_{SS} = \frac{I_{fstart}}{K} \rightarrow T_{SS} = \frac{C_{ss}I_{fstart}}{g_m I_{fstart} K} \rightarrow T_{SS} = \frac{C_{ss}}{g_m K} \rightarrow T_{SS} - k_{SS}C_{SS}$$

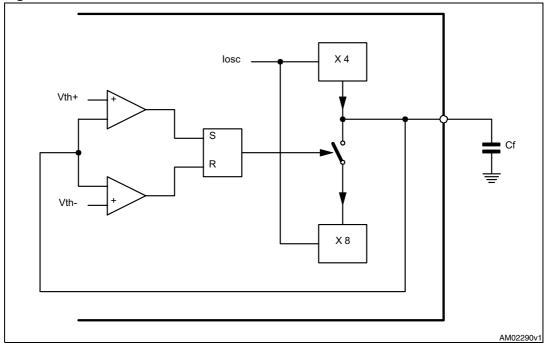
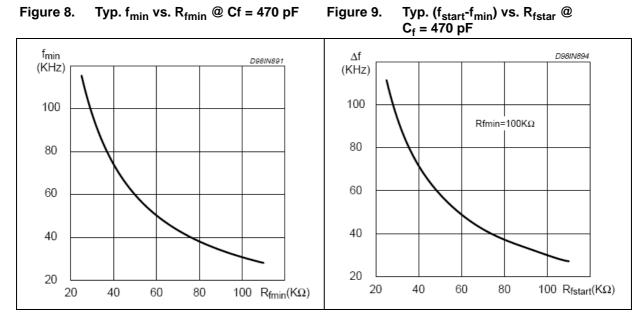
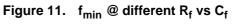
In this way the soft start time depends only on the capacitor C_{SS} . The typical value of the k_{SS} constant (Soft start timing constant) is 0.15 s/µF.

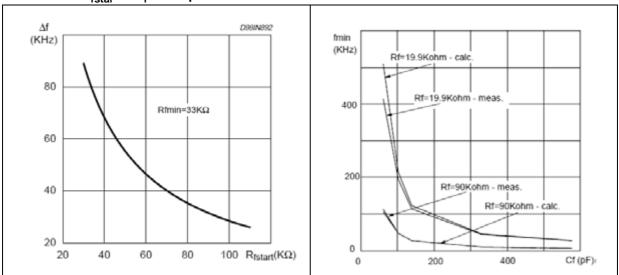
The current I_{osc} is fed to the oscillator as shown in fig. 7. It is twice mirrored (x4 and x8) generating the triangular wave on the oscillator capacitor C_f . Referring to the internal structure of the oscillator (fig.7), a good relationship to compute an approximate value of the oscillator frequency in normal operation is:

Equation 7

$$f_{min} = \frac{1.41}{R_{fmin}C_f}$$

The degree of approximation depends on the frequency value, but it remains very good in the range from 30 kHz to 100 kHz (figg.9-13)


Figure 7. Oscillator block

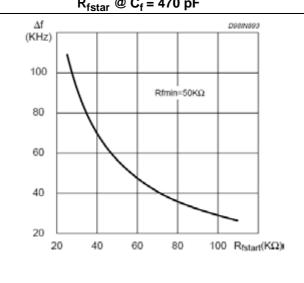
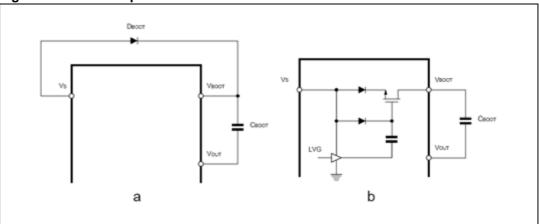


Figure 10. Typ. $(f_{start}-f_{min})$ vs. R_{fstar} @ C_f = 470 pF



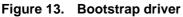


Figure 12. Typ. $(f_{start}-f_{min})$ vs. R_{fstar} @ C_f = 470 pF

5.3 Bootstrap section

The supply of the high voltage section is obtained by means of a bootstrap circuitry. This solution normally requires an high voltage fast recovery diode for charging the bootstrap capacitor (fig. 14a). In the device a patented integrated structure, replaces this external diode. It is released by means of a high voltage DMOS, driven synchronously with the low side driver (LVG), with in series a diode, as shown in fig. 14b.

To drive the synchronized DMOS it is necessary a voltage higher than the supply voltage Vs. This voltage is obtained by means of an internal charge pump (fig. 14b).

The diode connected in series to the DMOS has been added to avoid undesirable turn on of it. The introduction of the diode prevents any current can flow from the Vboot pin to the VS one in case that the supply is quickly turned off when the internal capacitor of the pump is not fully discharged.

The bootstrap driver introduces a voltage drop during the recharging of the capacitor Cboot (i.e. when the low side driver is on), which increases with the frequency and with the size of the external power MOS. It is the sum of the drop across the R_{DSON} and of the diode threshold voltage. At low frequency this drop is very small and can be neglected. Anyway increasing the frequency it must be taken in to account. In fact the drop, reducing the amplitude of the driving signal, can significantly increase the R_{DSON} of the external power MOS (and so the dissipation).

To be considered that in resonant power supplies the current which flows in the power MOS decreases increasing the switching frequency and generally the increases of R_{DSON} is not a problem because power dissipation is negligible. The following equation is useful to compute the drop on the bootstrap driver:

Equation 8

$$V_{drop} = I_{charge}R_{dson} + V_{diode} \rightarrow V_{drop} = \frac{Q_g}{T_{charge}}R_{dson} + V_{diode}$$

where Qg is the gate charge of the external power MOS, Rdson is the on resistance of the bootstrap DMOS, and Tcharge is the time in which the bootstrap driver remains on (about the semi-period of the switching frequency minus the dead time). The typical resistance value of the bootstrap DMOS is 150 Ω . For example using a power MOS with a total gate charge of 30 nC the drop on the bootstrap driver is about 3 V, at a switching frequency of 200 kHz. In fact:

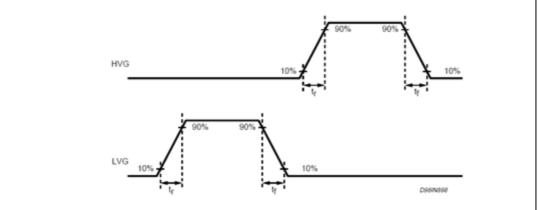
Equation 9

$$V_{drop} \; = \; \frac{30nC}{2.23\mu s} 150\Omega + 0.6V \sim 2.6V$$

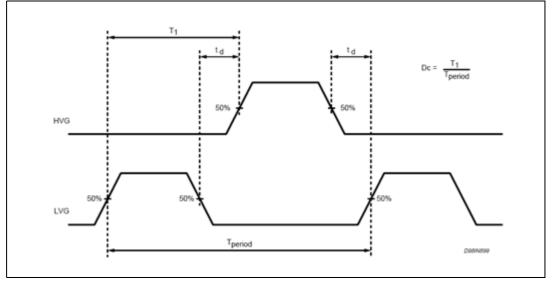
To summaries, if a significant drop on the bootstrap driver (at high switching frequency when large power MOS are used) represents a problem, an external diode can be used, avoiding the drop on the R_{DSON} of the DMOS.

5.4 Op amp section

The integrated op amp is designed to offer low output impedance, wide band, high input impedance and wide common mode range. It can be readily used to implement protection features or a closed loop control. For this purpose the op amp output can be properly connected to R_{fmin} pin to adjust the oscillation frequency.



5.5 Comparators


Two CMOS comparators are available to perform protection schemes.

Short pulses (\geq 200 ns) on comparators input are recognized. The EN1 input (active high), has a threshold of 0.6 V (typical value) forces the device in a latched shut down state (e.g. LVG low, HVG low, oscillator stopped), as in the under voltage conditions. Normal operating conditions are resumed after a power-off power-on sequence. The EN2 input (active high), with a threshold of 1.2 V (typical value) restarts a Soft Start sequence (see timing diagrams). In addition the EN2 comparator, when activated, removes a latched shutdown caused by EN1.

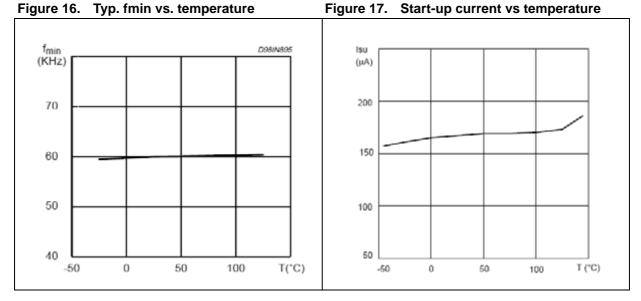
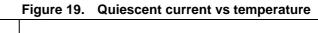
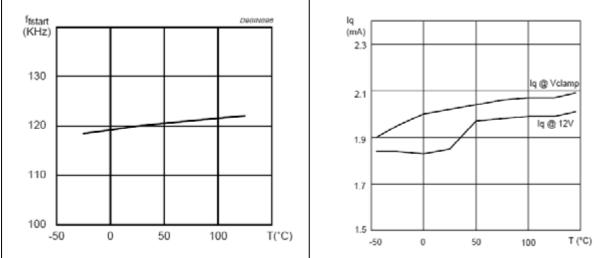


Figure 15. Dead time and duty cycle waveform definition




Doc ID 6554 Rev 7

57

57

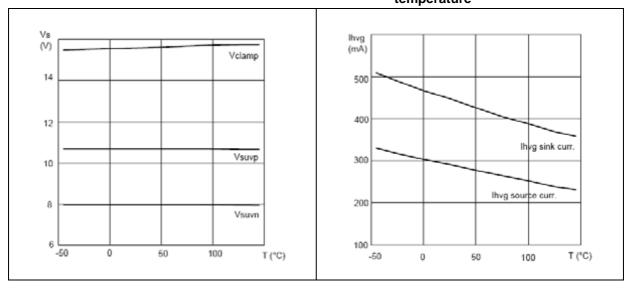
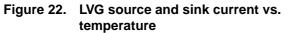
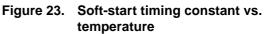
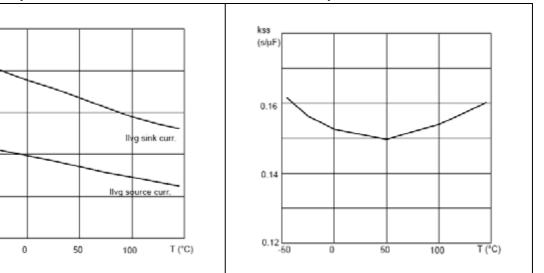



Figure 20. Vs thresholds and clamp vs temp. Figure 21. HVG source and sink current vs. temperature

llvg (mA)

500


400


300

200

100

-50

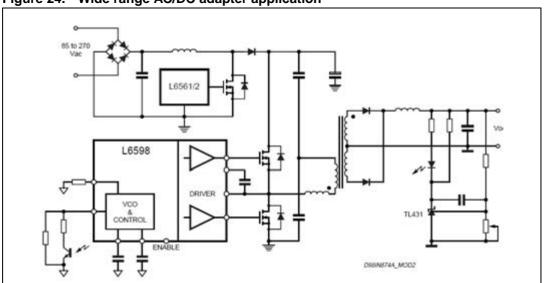
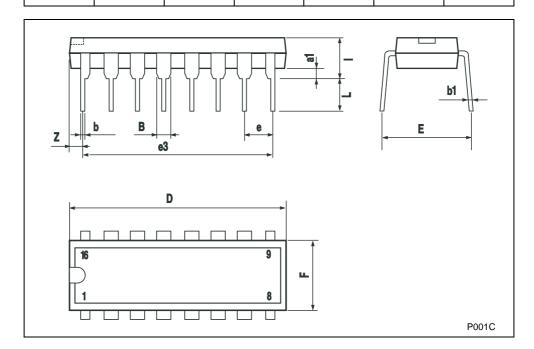
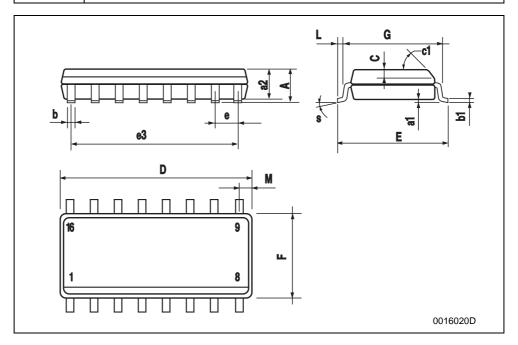


Figure 24. Wide range AC/DC adapter application


6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DIM.		mm.			inch	
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
Е		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	


Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX
А			1.75			0.068
a1	0.1		0.25	0.004		0.010
a2			1.64			0.063
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		•
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024

SO-16 MECHANICAL DATA

7 Ordering codes

 Table 6.
 Ordering information

Order codes	Package	Packing
L6598	DIP16	Tube
L6598D	SO16N	Tube
L6598D016TR	30101	Tape and reel

8 Revision history

Table 7.Document revision history

Date	Revision	Changes
21-Jun-2004	5	Changed the impagination following the new release of "corporate technical pubblication design guide". Done a few of corrections in the text.
09-Sep-2004	6	Added ordering number fot the tape and reel version, updated <i>Table 4 on page 4</i>
02-Oct-2009	7	Updated Table 4 on page 4

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 6554 Rev 7

