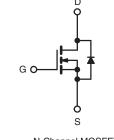
SiHG47N60E



E Series Power MOSFET

PRODUCT SUMMA	RY			
V_{DS} (V) at T_J max.	650)		
R _{DS(on)} max. at 25 °C (Ω)	$V_{GS} = 10 V$	0.064		
Q _g max. (nC)	220			
Q _{gs} (nC)	36			
Q _{gd} (nC)	60			
Configuration	Sing	le		

N-Channel MOSFET

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- Low Figure-of-Merit (FOM) Ron x Qa
- Low Input Capacitance (Ciss)
- Reduced Switching and Conduction Losses
- Ultra Low Gate Charge (Q_q)
- Avalanche Energy Rated (UIS)
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Switch Mode Power Supplies (SMPS)
- Power Factor Correction Power Supplies (PFC)
- Lighting
 - High-Intensity Discharge (HID)
 - Fluorescent Ballast Lighting
- Industrial
 - Welding
 - Induction Heating
 - Motor Drives
 - Battery Chargers
 - Renewable Energy
 - Solar (PV Inverters)

ORDERING INFORMATION	
Package	TO-247AC
Lead (Pb)-free and Halogen-free	SiHG47N60E-GE3

ABSOLUTE MAXIMUM RATINGS ($T_{\rm C}$	= 25 °C, unl	ess otherwis	se noted)		
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage			V _{DS}	600	
Drain-Source Voltage Gate-Source Voltage AC (f > 1 Hz) Continuous Drain Current ($T_J = 150 \ ^{\circ}C$) V_{GS} at Pulsed Drain Current ^a Linear Derating Factor Single Pulse Avalanche Energy ^b Maximum Power Dissipation			Ň	± 20	V
Gate-Source Voltage AC (f > 1 Hz)			V _{GS}	30	
Continuous Drain Current (T. 150 °C)	V at 10.V	T _C = 25 °C T _C = 100 °C		47	
Continuous Drain Current $(1_{\rm J} = 150 {\rm C})$	V _{GS} at 10 V	T _C = 100 °C	ID	30	А
Pulsed Drain Current ^a	•		I _{DM}	145	
Linear Derating Factor				3	W/°C
Single Pulse Avalanche Energy ^b			E _{AS}	1500	mJ
Maximum Power Dissipation			PD	357	W
Operating Junction and Storage Temperature Rang	T _J , T _{stg}	- 55 to + 150	°C		
Drain-Source Voltage Slope $T_J = 125 \text{ °C}$			37)//mm	
Reverse Diode dV/dt ^d	·		dV/dt	11	V/ns
Soldering Recommendations (Peak Temperature)	10 s		300 ^c	°C	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature.

b. V_{DD} = 50 V, starting T_J = 25 °C, L = 73.5 mH, R_q = 25 Ω , I_{AS} = 6.4 A.

c. 1.6 mm from case.

d. $I_{SD} \leq I_D$, dl/dt = 100 A/µs, starting T_J = 25 °C.

S11-2089 Rev. B, 31-Oct-11

1

COMPLIANT

HALOGEN FREE

Vishay Siliconix

PARAMETER	SYMBOL	TYP.		MAX.		UNIT				
Maximum Junction-to-Ambient	R _{thJA}	-		40			°C/W			
Maximum Junction-to-Case (Drain)	R _{thJC}	- 0.33								
		·								
SPECIFICATIONS (T _J = 25 $^{\circ}$ C, u	nless otherwi	ise noted)								
PARAMETER	SYMBOL	TES		ONS	MIN.	TYP.	MAX.	UNIT		
Static						•	•			
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} :	= 0 V, I _D = 2	50 µA	600	-	-	V		
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference to 25 °C, $I_D = 250 \ \mu A$		-	0.66	-	V/°C			
Gate-Source Threshold Voltage (N)	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 2	50 µA	2	-	4	V		
Gate-Source Leakage	I _{GSS}	$V_{GS} = \pm 20 V$		-	-	± 100	nA			
		V _{DS} =	= 600 V, V _{GS}	= 0 V	-	-	1			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 480 \	/, V _{GS} = 0 V,	T _J = 150 °C	-	-	10	μA		
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V I _D = 24 A - 0.053 0.064		Ω						
Forward Transconductance	9 _{fs}	V _D	_S = 8 V, I _D =		-	6.8	-	S		
Dynamic			-		1		1			
Input Capacitance	C _{iss}		V _{GS} = 0 V,		-	4810	-	<u> </u>		
Output Capacitance	C _{oss}	$V_{GS} = 0 V,$ $V_{DS} = 100 V,$		-	230	-	pF			
Reverse Transfer Capacitance	C _{rss}	f = 1 MHz - 5 -								
Total Gate Charge	Qg				-	147	220			
Gate-Source Charge	Q _{gs}	$V_{GS} = 10 V$ $I_D = 47 A, V_{DS} = 480 V$ - 36 -	-	nC						
Gate-Drain Charge	Q _{gd}		-	60	-					
Turn-On Delay Time	t _{d(on)}		•		-	24	50			
Rise Time	t _r	Voo	= 480 V In =	47 A	-	11	25			
Turn-Off Delay Time	t _{d(off)}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ns							
Fall Time	t _f									
Gate Input Resistance	R _g	f = 1	MHz, open	drain	-	0.65	-	Ω		
Drain-Source Body Diode Characteristic	S									
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the	bol		-	-	47	^		
Pulsed Diode Forward Current	I _{SM}	integral reverse p - n junction diode		-	-	140	A			
Diode Forward Voltage	V _{SD}	T _J = 25 °0	C, I _S = 47 A,	$V_{GS} = 0 V$	-	-	1.2	V		
Body Diode Reverse Recovery Time	t _{rr}				-	696	-	ns		
Body Diode Reverse Recovery Charge	Q _{rr}	$T_J = 2$	5 °C, I _F = I _S 100 A/µs, V	= 47 A,	-	16	-	μC		
Reverse Recovery Current	I _{BBM}	ai/at =	100 A/µs, V	R = ∠⊃ V	_	39	_	A		

Vishay Siliconix

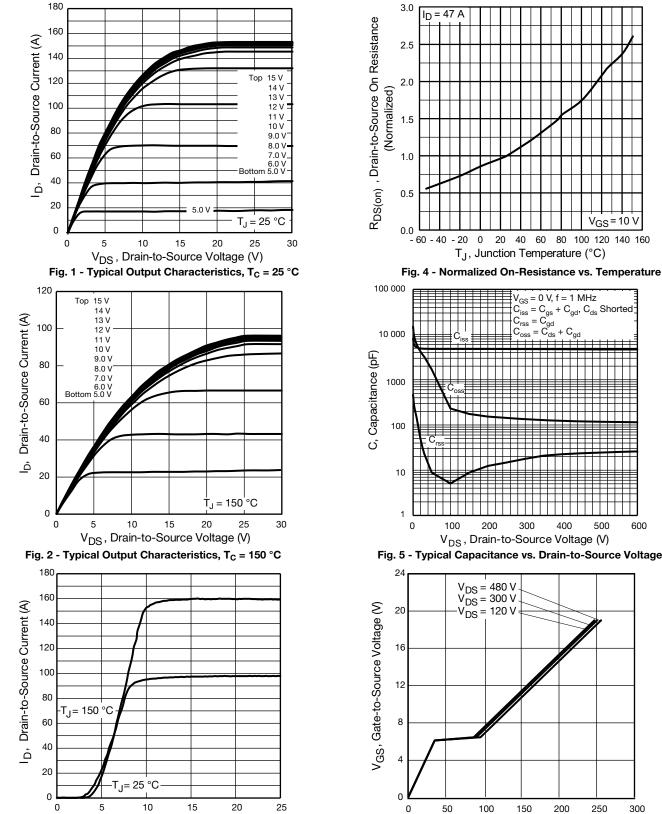
V_{GS} = 10

C_{gd}, C_{ds} Shorted

140 160

80 100 120

f = 1 MHz


400

500

600

60

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

S11-2089 Rev. B, 31-Oct-11

V_{GS}, Gate-to-Source Voltage (V)

Fig. 3 - Typical Transfer Characteristics

Document Number: 91474

250

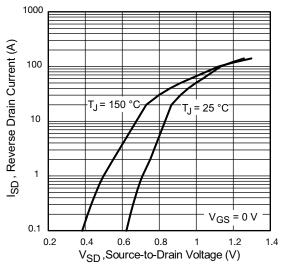
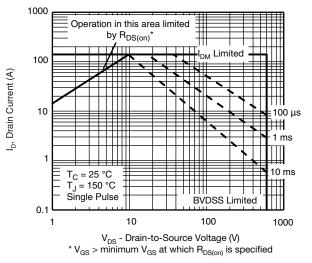
300

200

QG, Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com

SiHG47N60E

Vishay Siliconix

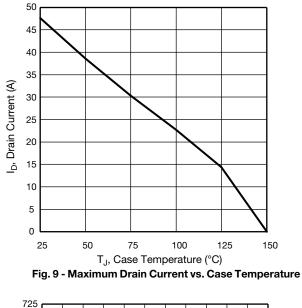


Fig. 7 - Typical Source-Drain Diode Forward Voltage

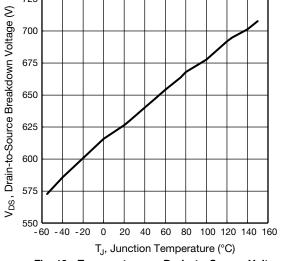
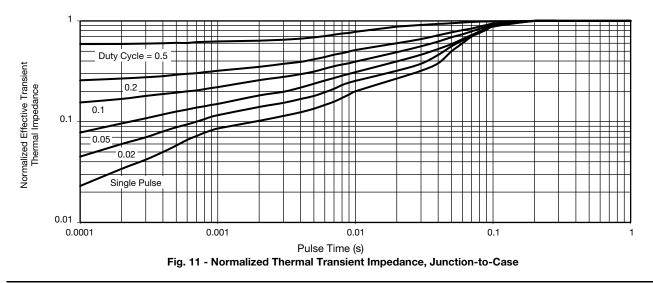



Fig. 10 - Temperature vs. Drain-to-Source Voltage

S11-2089 Rev. B, 31-Oct-11

4

Document Number: 91474

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

 V_{DS} R_{D} V_{GS} D.U.T. R_{G} U T V_{DD} T V_{DD} D.U.T.

Fig. 12 - Switching Time Test Circuit

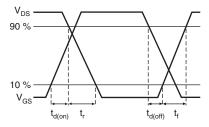


Fig. 13 - Switching Time Waveforms

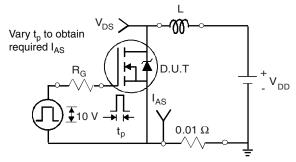
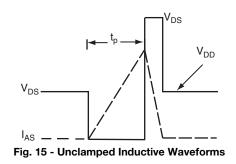



Fig. 14 - Unclamped Inductive Test Circuit

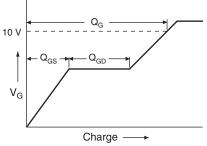


Fig. 16 - Basic Gate Charge Waveform

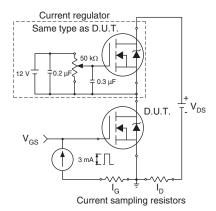
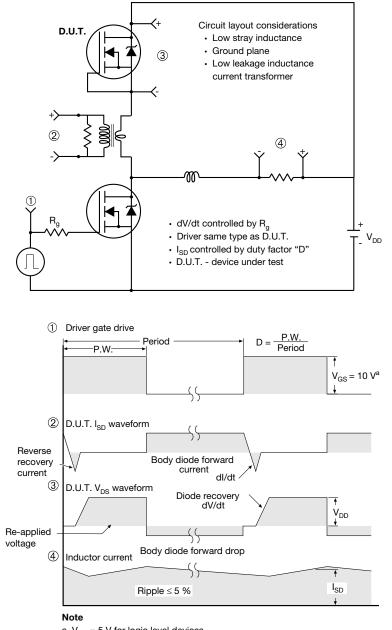


Fig. 17 - Gate Charge Test Circuit


5

SiHG47N60E

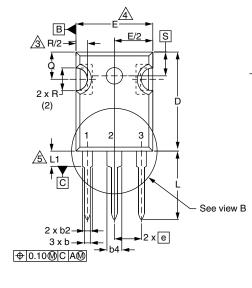
Vishay Siliconix

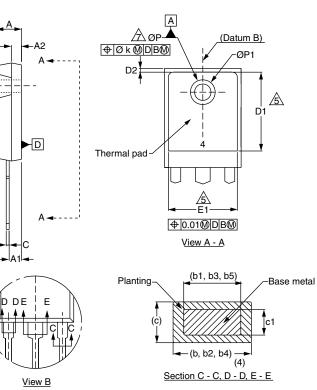
Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 V$ for logic level devices

Fig. 18 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91474.


S11-2089 Rev. B, 31-Oct-11



Vishay Siliconix

TO-247AC (HIGH VOLTAGE)

DIM.	MILLIMETERS		INCHES			MILLIMETERS		INCI					
	MIN.	MAX.	MIN.	MAX.	DIM.	MIN.	MAX.	MIN.					
А	4.65	5.31	0.183	0.209	D2	0.51	1.30	0.020					
A1	2.21	2.59	0.087	0.102	E	15.29	15.87	0.602					
A2	1.50	2.49	0.059	0.098	E1	13.72	-	0.540					
b	0.99	1.40	0.039	0.055	е	5.46 BSC		0.215 BS					
b1	0.99	1.35	0.039	0.053	Øk	0.254		0.254		0.254		0.0)
b2	1.65	2.39	0.065	0.094	L	14.20	16.10	0.559					
b3	1.65	2.37	0.065	0.093	L1	3.71	4.29	0.146					
b4	2.59	3.43	0.102	0.135	Ν			0.300 BSC	I				
b5	2.59	3.38	0.102	0.133	ØР	3.56	3.66	0.140					
С	0.38	0.86	0.015	0.034	Ø P1	-	7.39	-					
c1	0.38	0.76	0.015	0.030	Q	5.31	5.69	0.209	I				
D	19.71	20.70	0.776	0.815	R	4.52	5.49	0.178					
D1	13.08	-	0.515	0.515 -		5.51 BSC		0.217	7				

Notes

1. Dimensioning and tolerancing per ASME Y14.5M-1994.

2. Contour of slot optional.

3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body.

4. Thermal pad contour optional with dimensions D1 and E1.

5. Lead finish uncontrolled in L1.

6. Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154").

7. Outline conforms to JEDEC outline TO-247 with exception of dimension c.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.