CAT24C512

512 kb I²C CMOS Serial EEPROM

Description

The CAT24C512 is a 512 kb Serial CMOS EEPROM, internally organized as 65,536 words of 8 bits each.

It features a 128-byte page write buffer and supports the Standard $(100 \mathrm{kHz})$, Fast (400 kHz) and Fast-Plus (1 MHz) $\mathrm{I}^{2} \mathrm{C}$ protocol.

Write operations can be inhibited by taking the WP pin High (this protects the entire memory).

External address pins make it possible to address up to eight CAT24C512 devices on the same bus.

Features

- Supports Standard, Fast and Fast-Plus I ${ }^{2}$ C Protocol
- 1.8 V to 5.5 V Supply Voltage Range
- 128-Byte Page Write Buffer
- Hardware Write Protection for Entire Memory
- Schmitt Triggers and Noise Suppression Filters on I ${ }^{2} \mathrm{C}$ Bus Inputs (SCL and SDA)
- Low Power CMOS Technology
- 1,000,000 Program/Erase Cycles
- 100 Year Data Retention
- Industrial and Extended Temperature Range
- 8-pin PDIP, SOIC, TSSOP and 8-pad UDFN Packages
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Functional Symbol

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

PIN CONFIGURATION

For the location of Pin 1, please consult the corresponding package drawing.

PIN FUNCTION	
Pin Name	Function
$\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$	Device Address
SDA	Serial Data
SCL	Serial Clock
WP	Write Protect
V_{CC}	Power Supply
V_{SS}	Ground
ORDERING INFORMATION	

See detailed ordering and shipping information in the package dimensions section on page 15 of this data sheet.

CAT24C512

MARKING DIAGRAMS

UDFN-8 (HU5)

PDIP-8 (L)

TSSOP-8 (Y)

24512A = Specific Device Code
A = Assembly Location Code
Y $\quad=$ Production Year (Last Digit)
M $\quad=$ Production Month (1-9, O, N, D)
XXX = Last Three Digits of Assembly Lot Number

- $\quad=\mathrm{Pb}-$ Free Microdot

C9L = Specific Device Code
A = Assembly Location Code
LL = Last Two Digits of Assembly Lot Number
Y $\quad=$ Production Year (Last Digit)
M $\quad=$ Production Month (1-9, O, N, D)

- $\quad=\mathrm{Pb}-$ Free Microdot

24512A = Specific Device Code
A = Assembly Location Code
XXX = Last Three Digits of Assembly Lot Number
YY = Production Year (Last Two Digits)
WW = Production Week (Two Digit)
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Designator

C12A = Specific Device Code
A = Assembly Location Code
Y $\quad=$ Production Year (Last Digit)
M $\quad=$ Production Month (1-9, O, N, D)
XXX = Last Three Digits of Assembly Lot Number

- $\quad=\mathrm{Pb}-$ Free Microdot

CAT24C512

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameters	Ratings	Units
Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Voltage on any Pin with Respect to Ground (Note 1)	-0.5 to +6.5	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. The DC input voltage on any pin should not be lower than -0.5 V or higher than $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$. During transitions, the voltage on any pin may undershoot to no less than -1.5 V or overshoot to no more than $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$, for periods of less than 20 ns.

Table 2. RELIABILITY CHARACTERISTICS (Note 2)

Symbol	Parameter	Min	Units
$\mathrm{N}_{\text {END }}$ (Note 3)	Endurance	$1,000,000$	Program/Erase Cycles
T_{DR}	Data Retention	100	Years

2. These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC-Q100 and JEDEC test methods.
3. Page Mode, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, 25^{\circ} \mathrm{C}$.

Table 3. D.C. OPERATING CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $\mathrm{V} \mathrm{CC}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Test Conditions		Min	Max	Units
$\mathrm{I}_{\text {CCR }}$	Read Current	Read, $\mathrm{f}_{\text {SCL }}=400 \mathrm{kHz} / 1 \mathrm{MHz}$			1	mA
ICCW	Write Current				3	mA
$\mathrm{I}_{\text {SB }}$	Standby Current	All I/O Pins at GND or V_{CC}	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		2	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		5	
I_{L}	I/O Pin Leakage	Pin at GND or V_{CC}	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		2	
$\mathrm{V}_{\text {IL1 }}$	Input Low Voltage	$2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$		-0.5	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL2 }}$	Input Low Voltage	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<2.5 \mathrm{~V}$		-0.5	$0.25 \mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{1 \mathrm{H} 1}$	Input High Voltage	$2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$		$0.7 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\mathrm{IH} 2}$	Input High Voltage	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<2.5 \mathrm{~V}$		$0.75 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\mathrm{OL} 1}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}} \geq 2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=3.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\mathrm{OL} 2}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}<2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$			0.2	V

Table 4. PIN IMPEDANCE CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	Max	Units
$\mathrm{C}_{\text {IN }}$ (Note 4)	SDA I/O Pin Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	8	pF
$\mathrm{C}_{\text {IN }}$ (Note 4)	Input Capacitance (other pins)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	6	pF
$\mathrm{I}_{\mathrm{WP},} \mathrm{I}_{\mathrm{A}}$ (Note 5)	WP Input Current, Address Input Current ($\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$)	$\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	75	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	50	
		$\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	25	
		$\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{IH}}$	2	

4. These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC-Q100 and JEDEC test methods.
5. When not driven, the WP, A_{0}, A_{1}, A_{2} pins are pulled down to GND internally. For improved noise immunity, the internal pull-down is relatively strong; therefore the external driver must be able to supply the pull-down current when attempting to drive the input HIGH. To conserve power, as the input level exceeds the trip point of the CMOS input buffer ($\sim 0.5 \times V_{\mathrm{CC}}$), the strong pull-down reverts to a weak current source.

Table 5. A.C. CHARACTERISTICS (Note 6)
$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $\mathrm{V} \mathrm{CC}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Standard$V_{c C}=1.8 \mathrm{~V}-5.5 \mathrm{~V}$		$\stackrel{\text { Fast }}{\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}-5.5 \mathrm{~V}}$		$\begin{gathered} \text { Fast-Plus } \\ \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		Units
		Min	Max	Min	Max	Min	Max	
FSCL	Clock Frequency		100		400		1,000	kHz
$t_{\text {HD: }}$ STA	START Condition Hold Time	4		0.6		0.25		us
tLow	Low Period of SCL Clock	4.7		1.3		0.45		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	High Period of SCL Clock	4		0.6		0.40		us
$\mathrm{t}_{\text {Su:STA }}$	START Condition Setup Time	4.7		0.6		0.25		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD: }}$ DAT	Data In Hold Time	0		0		0		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU:DAT }}$	Data In Setup Time	250		100		50		ns
t_{R} (Note 7)	SDA and SCL Rise Time		1,000		300		100	ns
t_{F} (Note 7)	SDA and SCL Fall Time		300		300		100	ns
tsu:Sto	STOP Condition Setup Time	4		0.6		0.25		us
$\mathrm{t}_{\text {BuF }}$	Bus Free Time Between STOP and START	4.7		1.3		0.5		$\mu \mathrm{S}$
t_{AA}	SCL Low to Data Out Valid		3.5		0.9		0.40	us
t_{DH}	Data Out Hold Time	50		50		50		ns
Ti (Note 7)	Noise Pulse Filtered at SCL and SDA Inputs		50		50		50	ns
${ }_{\text {t }}$ U:WP	WP Setup Time	0		0		0		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD: WP }}$	WP Hold Time	2.5		2.5		1		$\mu \mathrm{s}$
twR	Write Cycle Time		5		5		5	ms
tpu (Notes 7, 8)	Power-up to Ready Mode		1		1	0.1	1	ms

6. Test conditions according to "A.C. Test Conditions" table.
7. Tested initially and after a design or process change that affects this parameter.
8. $t_{P U}$ is the delay between the time $V_{C C}$ is stable and the device is ready to accept commands.

Table 6. A.C. TEST CONDITIONS

Input Levels	$0.2 \times \mathrm{V}_{\mathrm{CC}}$ to $0.8 \times \mathrm{V}_{\mathrm{CC}}$
Input Rise and Fall Times	$\leq 50 \mathrm{~ns}$
Input Reference Levels	$0.3 \times \mathrm{V}_{\mathrm{CC}}, 0.7 \times \mathrm{V}_{\mathrm{CC}}$
Output Reference Levels	$0.5 \times \mathrm{V}_{\mathrm{CC}}$
Output Load	Current Source: $\mathrm{I}_{\mathrm{L}}=3 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{CC}} \geq 2.5 \mathrm{~V}\right) ; \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{CC}}<2.5 \mathrm{~V}\right) ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Power-On Reset (POR)

The CAT24C512 incorporates Power-On Reset (POR) circuitry which protects the internal logic against powering up in the wrong state.

The device will power up into Standby mode after V_{CC} exceeds the POR trigger level and will power down into Reset mode when V_{CC} drops below the POR trigger level.
This bi-directional POR behavior protects the device against brown-out failure, following a temporary loss of power.

Pin Description

SCL: The Serial Clock input pin accepts the Serial Clock signal generated by the Master.
SDA: The Serial Data I/O pin receives input data and transmits data stored in EEPROM. In transmit mode, this pin is open drain. Data is acquired on the positive edge, and is delivered on the negative edge of SCL.
$\mathbf{A}_{\mathbf{0}}, \mathbf{A}_{\mathbf{1}}$ and $\mathbf{A}_{\mathbf{2}}$: The Address pins accept the device address. These pins have on-chip pull-down resistors.
WP: The Write Protect input pin inhibits all write operations, when pulled HIGH. This pin has an on-chip pull-down resistor.

Functional Description

The CAT24C512 supports the Inter-Integrated Circuit $\left(I^{2} \mathrm{C}\right)$ Bus data transmission protocol, which defines a device that sends data to the bus as a transmitter and a device receiving data as a receiver. Data flow is controlled by a Master device, which generates the serial clock and all START and STOP conditions. The CAT24C512 acts as a Slave device. Master and Slave alternate as either transmitter or receiver. Up to 8 devices may be connected to the bus as determined by the device address inputs $\mathrm{A}_{0}, \mathrm{~A}_{1}$, and A_{2}.

$I^{2} \mathrm{C}$ Bus Protocol

The $\mathrm{I}^{2} \mathrm{C}$ bus consists of two 'wires', SCL and SDA. The two wires are connected to the V_{CC} supply via pull-up resistors. Master and Slave devices connect to the 2-wire bus via their respective SCL and SDA pins. The transmitting
device pulls down the SDA line to 'transmit' a ' 0 ' and releases it to 'transmit' a ' 1 '.

Data transfer may be initiated only when the bus is not busy (see A.C. Characteristics).

During data transfer, the SDA line must remain stable while the SCL line is HIGH. An SDA transition while SCL is HIGH will be interpreted as a START or STOP condition (Figure 2).

START

The START condition precedes all commands. It consists of a HIGH to LOW transition on SDA while SCL is HIGH. The START acts as a 'wake-up' call to all receivers. Absent a START, a Slave will not respond to commands.

STOP

The STOP condition completes all commands. It consists of a LOW to HIGH transition on SDA while SCL is HIGH. The STOP starts the internal Write cycle (when following a Write command) or sends the Slave into standby mode (when following a Read command).

Device Addressing

The Master initiates data transfer by creating a START condition on the bus. The Master then broadcasts an 8-bit serial Slave address. The first 4 bits of the Slave address are set to 1010, for normal Read/Write operations (Figure 3). The next 3 bits, A_{2}, A_{1} and A_{0}, select one of 8 possible Slave devices. The last bit, R/W, specifies whether a Read (1) or Write (0) operation is to be performed.

Acknowledge

After processing the Slave address, the Slave responds with an acknowledge (ACK) by pulling down the SDA line during the 9th clock cycle (Figure 4). The Slave will also acknowledge the byte address and every data byte presented in Write mode. In Read mode the Slave shifts out a data byte, and then releases the SDA line during the 9th clock cycle. If the Master acknowledges the data, then the Slave continues transmitting. The Master terminates the session by not acknowledging the last data byte (NoACK) and by sending a STOP to the Slave. Bus timing is illustrated in Figure 5.

Figure 2. Start/Stop Timing

1	0	1	0	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	R / W
$\underbrace{}_{\text {DEVICE ADDRESS }}$							

Figure 3. Slave Address Bits

Figure 4. Acknowledge Timing

Figure 5. Bus Timing

WRITE OPERATIONS

Byte Write

In Byte Write mode the Master sends a START, followed by Slave address, two byte address and data to be written (Figure 6). The Slave acknowledges all 4 bytes, and the Master then follows up with a STOP, which in turn starts the internal Write operation (Figure 7). During internal Write, the Slave will not acknowledge any Read or Write request from the Master.

Page Write

The CAT24C512 contains 65,536 bytes of data, arranged in 512 pages of 128 bytes each. A two byte address word, following the Slave address, points to the first byte to be written. The most significant 9 bits (A_{15} to A_{7}) identify the page and the last 7 bits identify the byte within the page. Up to 128 bytes can be written in one Write cycle (Figure 8).

The internal byte address counter is automatically incremented after each data byte is loaded. If the Master transmits more than 128 data bytes, then earlier bytes will be overwritten by later bytes in a 'wrap-around' fashion (within the selected page). The internal Write cycle starts immediately following the STOP.

During an internal Write operation, new data provided by Byte Write or Page Write instructions will replace data previously stored at the corresponding address locations, while data stored at all other address locations within the same page will be refreshed. Thus, whether writing one byte or 128 bytes to a page, the entire page will be reprogrammed with the corresponding combination of new and old data.

Acknowledge Polling

Acknowledge polling can be used to determine if the CAT24C512 is busy writing or is ready to accept commands. Polling is implemented by interrogating the device with a 'Selective Read' command (see READ OPERATIONS).

The CAT24C512 will not acknowledge the Slave address, as long as internal Write is in progress.

Hardware Write Protection

With the WP pin held HIGH, the entire memory is protected against Write operations. If the WP pin is left floating or is grounded, it has no impact on the operation of the CAT24C512. The state of the WP pin is strobed on the last falling edge of SCL immediately preceding the first data byte (Figure 9). If the WP pin is HIGH during the strobe interval, the CAT24C512 will not acknowledge the data byte and the Write request will be rejected.

Delivery State

The CAT24C512 is shipped erased, i.e., all bytes are FFh.

CAT24C512

Figure 6. Byte Write Timing

Figure 7. Write Cycle Timing

Figure 8. Page Write Timing

Figure 9. WP Timing

READ OPERATIONS

Immediate Address Read

In standby mode, the CAT24C512 internal address counter points to the data byte immediately following the last byte accessed by a previous operation. If that 'previous' byte was the last byte in memory, then the address counter will point to the 1st memory byte, etc.

When, following a START, the CAT24C512 is presented with a Slave address containing a ' 1 ' in the R / W bit position (Figure 10), it will acknowledge (ACK) in the 9th clock cycle, and will then transmit data being pointed at by the internal address counter. The Master can stop further transmission by issuing a NoACK, followed by a STOP condition.

Selective Read

The Read operation can also be started at an address different from the one stored in the internal address counter.

The address counter can be initialized by performing a 'dummy' Write operation (Figure 11). Here the START is followed by the Slave address (with the R/W bit set to ' 0 ') and the desired two byte address. Instead of following up with data, the Master then issues a 2nd START, followed by the 'Immediate Address Read' sequence, as described earlier.

Sequential Read

If the Master acknowledges the 1st data byte transmitted by the CAT24C512, then the device will continue transmitting as long as each data byte is acknowledged by the Master (Figure 12). If the end of memory is reached during sequential Read, then the address counter will 'wrap-around' to the beginning of memory, etc. Sequential Read works with either 'Immediate Address Read' or 'Selective Read', the only difference being the starting byte address.

Figure 10. Immediate Address Read Timing

Figure 12. Sequential Read Timing

CAT24C512

PACKAGE DIMENSIONS

PDIP-8, $\mathbf{3 0 0}$ mils
CASE 646AA-01
ISSUE A

SYMBOL	MIN	NOM	MAX
A			5.33
A1	0.38		
A2	2.92	3.30	4.95
b	0.36	0.46	0.56
b2	1.14	1.52	1.78
c	0.20	0.25	0.36
D	9.02	9.27	10.16
E	7.62	7.87	8.25
E1	6.10	6.35	7.11
e	2.54 BSC		
eB	7.87		10.92
L	2.92	3.30	3.80

END VIEW

Notes:
(1) All dimensions are in millimeters.
(2) Complies with JEDEC MS-001.

CAT24C512

PACKAGE DIMENSIONS

SOIC 8, 150 mils
CASE 751BD-01
ISSUE O

SYMBOL	MIN	NOM	MAX
A	1.35		1.75
A1	0.10		0.25
b	0.33		0.51
c	0.19		0.25
D	4.80		5.00
E	5.80		6.20
E1	3.80		4.00
e	1.27 BSC		
h	0.25		0.50
L	0.40		1.27
θ	0°		8°

TOP VIEW

SIDE VIEW

END VIEW

Notes:
(1) All dimensions are in millimeters. Angles in degrees.
(2) Complies with JEDEC MS-012

CAT24C512

PACKAGE DIMENSIONS

TSSOP8, 4.4x3
CASE 948AL-01
ISSUE O

SYMBOL	MIN	NOM	MAX	
A			1.20	
A1	0.05		0.15	
A2	0.80	0.90	1.05	
b	0.19		0.30	
c	0.09		0.20	
D	2.90	3.00	3.10	
E	6.30	6.40	6.50	
E1	4.30	4.40	4.50	
e	0.65 BSC			
L	1.00 REF			
L1	0.50	0.60	0.75	
θ	0°			

TOP VIEW

SIDE VIEW

Notes:
(1) All dimensions are in millimeters. Angles in degrees.
(2) Complies with JEDEC MO-153.

CAT24C512

PACKAGE DIMENSIONS

UDFN8 3.0x2.0, 0.5P
CASE 517BU-01
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.25 MM FROM TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
b	0.20	0.30
D	2.00	
BSC		
D2	1.35	
E	1.45	
E2	0.00	
0.85		0.95
e	0.50	
BSC		
L	0.35	0.45

RECOMMENDED MOUNTING FOOTPRINT

CAT24C512

PACKAGE DIMENSIONS

SOIC-8, 208 mils
CASE 751BE-01
ISSUE O

SYMBOL	MIN	NOM	MAX		
A			2.03		
A1	0.05		0.25		
b	0.36		0.48		
c	0.19		0.25		
D	5.13		5.33		
E	7.75		8.26		
E1	5.13		5.38		
e	1.27 BSC				
L	0.51				
θ	0°				

TOP VIEW

SIDE VIEW

END VIEW

Notes:
(1) All dimensions are in millimeters. Angles in degrees.
(2) Complies with EIAJ EDR-7320.

Example of Ordering Information (Note 11)

ORDERING INFORMATION

Orderable Part Numbers	
CAT24C512LI-G	CAT24C512LE-G
CAT24C512WI-GT3	CAT24C512WE-GT3
CAT24C512XI-T2	CAT24C512XE-T2
CAT24C512YI-GT3	CAT24C512YE-GT3
CAT24C512HU5IGT3* (Note 13)	CAT24C512HU5EGT3* (Note 13)

9. All packages are RoHS-compliant (Lead-free, Halogen-free).
10. The standard lead finish is NiPdAu.
11. The device used in the above example is a CAT24C512WI-GT3 (SOIC-JEDEC, Industrial Temperature, NiPdAu, Tape \& Reel, 3,000/Reel).
12. For SOIC, EIAJ (X) package the standard lead finish is Matte-Tin. This package is available in 2,000 pcs/reel, i.e., CAT24C512XI-T2.
13. Part number is not exactly the same as the "Example of Ordering Information" shown above. For part numbers marked with * there are NO hyphens in the orderable part numbers.
14.For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor is licensed by Philips Corporation to carry the $\mathrm{I}^{2} \mathrm{C}$ Bus Protocol.
ON Semiconductor and (iN) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

